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Abstract

Galaxy clusters are the largest gravitationally bound objects in the universe, they trace
the highest peaks of the dark matter distribution and their abundance is therefore a con-
siderable probe of fundamental cosmological theory.

Because of the finite size of a survey volume, the number counts of observed halos
originates a Poisson noise, in the same way the finite size of the measured Fourier modes
of the power spectrum yields to a Halo Sample Variance HSV, or Super-Sample variance.
These two quantity contribute to the statistical error of clusters number counts: the Halo
Number Counts Variance HNCV. At the present observations, this is currently assumed
to be Poissonian, however current and upcoming surveys will increase the sample size by
several orders of magnitude, from N ∼ O(102) to N ∼ O(105) with e.g: eRosita, DES,
Euclid.
This change will necessitate a more sophisticated approach in the determination of the
HNCV, which has to include Super-sample variance and covariance of the cluster distri-
bution. For this reason the Halo Number Counts Variance will be at the center of the
discussion in this dissertation and we want to test its behavior trough different mass and
redshift bin for a full sky survey.

To tackle this issue we availed ourselves of a large suite of simulated cluster catalogs,
using the PINpointing Orbit-Crossing Collapsed HIerarchical Objects PINOCCHIO code,
a semi-analytic Lagrangian code that generates halo catalog on a ΛCDM cosmology.

This dissertation is organized as follows. In Chapter 1 we will briefly introduce the topic,
mentioning some method of detection for galaxy cluster and summarizing the current state
of play of present and future projects.
In Chapter 2 we will discuss the cosmological background on which this dissertation is
based on, we will follow the theoretical development of the HNCV by Lacasa & Rosenfeld
2016 [12], Takada & Spergel 2014 [16] and Valageas et al. 2012 [17] and explain in details
the simulation and the cosmology used.



x Abstract

Chapter 3 is where we will start our analysis, we will evaluate the Covariance Matrix
from the mock catalog, then we will examine the relative contribution of the two afore-
mentioned statistical fluctuation, then we will compare the data from the simulation with
numerical results, then we will have a look at the behavior of the statistical error for dif-
ferent survey Area, changing the aperture of the past-light cone in our simulations.
In conclusion with Chapter 4 we will discuss the obtained results, the technical issues and
share some ideas to improve our work.



Chapter 1

Introduction

Galaxy clusters have a long history as cosmological probes. Back in the 1933 Fritz Zwicky
provided the first evidence of the presence of an unseen matter, referred as dark matter,
studying the Coma galaxy cluster (Abell 1656) [1].
Another important contribution has been made in the early ’70, J. Richard Gott et al. [2]
studied the mass-to-light ratio of galaxy clusters, helping in a first estimation of the matter
density range in the universe.

Nowadays galaxy cluster remain an important cosmological probes for testing a large
variety of features of the universe. In my dissertation they will be used to study the ex-
pected number count in a survey volume and we will be especially focus on the behavior
of its relative statistical error, that will be explained in detail later.

1.1 Galaxy Cluster Observation

Galaxy cluster can be observed in the optical, X-ray band or by means of the Sunyaev-
Zel’dovich effect [4]. In the optical regime the observable propriety is the richness, i.e:
the number of galaxies, in a specific luminosity and color range within an estimated viral
radius of the halo.
On the other hand the gaseous intracluster medium (ICM), an hot and highly ionized
thermal plasma which is distributed smoothly throughout the whole cluster volume, has a
temperature of 10− 100× 106K degrees, making galaxy cluster the second most luminous
X-ray sources in the universe [5]. The extrapolated mass of the gas Mgas, the X-ray lumi-
nosity LX and temperature TX provide a sensible observable indicator for halo mass.
The Sunyaev-Zel’dovich effect (hereafter abbreviated SZ) consists in the scatter of CMB
photons, by inverse Compton effect, with free electron in the ICM, characterizing a flux
decrement YSZ so that YX = TXMgas define an X-ray observable that scale with it. Obser-
vations of the SZ effect provide an almost redshift independent way to detect galaxy cluster.
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Halo abundance is mainly sensitive to the amplitude of the matter power spectrum σ8(z)
and the matter density Ωm. The real challenge, to exploit galaxy cluster for cosmology,
resides in an accurate calibration of the relation between cluster observable and cluster
mass.
Following the definition in David H. Weinberg et al. 2013 [4], the mass-observable relation
P (X|M, z) is the probability that a halo of mass M at redshift z is detected by the galaxy
cluster observable X (e.g : richness, YSZ , LX), so that the expected number of galaxy
clusters in a volume V (z) above a threshold Xmin is:

N(Xmin, z) =

∫ ∞
Xmin

dX

∫ ∞
0

dM V (z)
dn(z)

dM
P (X|M, z) (1.1.1)

where dn/dM is the halo mass function. Equation (1.1.1) conceals several potential uncer-
tainties, the first inferred assumption is that a correct redshift measurement for each cluster
is given, than in practice it occurs that the extrapolated data does not represent correctly
the halo mass or redshift because of a lack of knowledge about the mass-observable relation
P (X|M, z). For the three above mentioned methods this main uncertainty leads to pro
and con.

Up-scattered CMB photons by SZ effect does not depend on the cluster distance, so the
signal does not undergo to cosmological redshift, but in practice the size of the telescope’s
beam and the relative size of the observed object, reduce drastically the quality of the
extrapolated catalog, to such an extend that the signal does not archive enough sensitivity
to detect low mass clusters, making this method complex to implement.
The main advantages of optical surveys is the low mass threshold detection, with mass as
low as 5 × 1013M� [4]. On the other hand the main lack for optical cluster detection is
projected effects, consisting in mistakenly consider multiple halos along the same line of
sight as a single massive cluster. At z ≈ 1 the spectrum of early-type galaxies shift into
the near-IR, but with IR adaptations of optical cluster survey, astronomers are able to
avoid this problem assuring cluster detection for higher redshift, depending on the specific
survey.
The ICM is tied up by the cluster gravitational potential and therefore the thermal emission
is a good tracer of the cluster’s potential [6]. A cluster X-ray Luminosity LX is proportional
to the square of the temperature [5],

LX ∝ T 2
X

which enhance the contrast on the sky and therefore the X-ray background can be easily
subtracted from the data, moreover the clusters X-ray brightness is mostly concentrated
around their center, so that the projected effects are minimized [6]. The biggest disad-
vantage of X-ray detection is technological, because of earth’s atmospheric X-ray opacity,
observations have to be space based.
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1.2 Current and Future Projects

At the present days there are several survey going on and future project planned that
involve cluster detection in the optical (e.g: DES), X-ray (e.g: eROSITA) and SZ (e.g:
SPTpol and ACTpol) spectrum. X-ray detection is considered the cleanest method for
selecting galaxy clusters and there are numerous X-ray survey that play a major role in
this domain, such as the ROSAT-ESO Flux Limited X-ray (REFLEX) that sampled 452
clusters in an area of 14′000 deg2 on a redshift z < 0.5 [6].
The launch of eROSITA should detect ∼ 105 objects over the full sky out to z ≈ 1, so
that the X-rays will be ensured to play a chief role in the observation and study of galaxy
clusters. This examples show an increasing mass threshold with redshift, typical of flux
limited survey, to better illustrate the assertions just made, we present Figure 1.1, realized
by David H. Weinberg et al. 2013 [4].

Figure 1.1: Selection of surveys
This comparisons was prepared by David H. Weinberg et al. 2013 [4], The top plots show
present or currently ongoing surveys. The bottom plots show future surveys. On the left

side we have the mass threshold as a function of redshift z and on the right side the
number of galaxy cluster threshold in redshift bin ∆z = 0.1. The yellow area corresponds
to the region expected to have less than one object for the considered mass and redshift.

The plots express only a roughly indicative mass and redshift limiting, in practice we
never have a well defined threshold.
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Also optical surveys have an important role in cluster detection, this methods is espe-
cially efficient for redshift z < 1, as shown in Figure 1.1, the Dark Energy Survey (DES)
works for low mass threshold M ≥ 1014M� over the redshift range 0.3 < z < 1, but for
larger redshift its sensitivity declines rapidly, or as the Sloan Digital Sky Survey (SDSS),
who reaches low mass over large sky area but only extended to z < 0.5, another example
is the Red-Sequence Cluster Survey 2 (RCS-2) that reaches cluster at z ≈ 1 over a small
area of approximately 1′000 deg2.
Above this redshift the spectrum of early type galaxy cluster shift into near-IR, but this
redshift limit can be avoided with IR adaptation, with the advent of Euclid, the clusters
research in the IR will be capable of finding object out to z ∼ 2. Another very important
upcoming project is the Large Synoptic Survey Telescope (LSST), it will push the optical
selection limit to z ≈ 1.5, increasing the number of galaxy clusters by one to two order of
magnitude above redshift z = 1.

For the actual state of play of the SZ method, there are two new project, the South
Pole Telescope (SPTpol) and the Atacama Cosmology Telescope (ACTpol), they should
lead to significantly lower mass thresholds for SZ cluster detection then the actual STP
and ATP, with a better sensitivity to high redshift clusters z ≤ 1 [4] and with respectively
a mass thresholds of 7× 1014M� and 1015M�. Meanwhile the Planck SZ survey provides
the largest SZ cluster catalog present nowadays, but it is only limited to massive cluster
above threshold 8× 1014M�, for moderate redshift z ≤ 1.
In the following Table 1.1, we listed the most representative survey focused on cluster
detection going on at the present days and near future.

Name Survey Area (deg2) Method

eROSITA 40′000 X-ray
Planck 30′000 SZ
LSST 20′000 optical
Euclid 15′000 optical/IR

REFLEX 14′000 X-ray
SDSS 10′000 optical
DES 5′000 optical

ACTpol 4′000 SZ
RCS-2 1′000 optical
ACT 1′000 SZ
SPT 600 SZ

SPTpol 600 SZ

Table 1.1: Completed or currently ongoing surveys
List of survey focused on cluster detection, we specified their survey area and the

detection method. In Bold, we highlight the surveys that we will use later, in Chapter 3,
to study the relation between the statistical error and the survey Area.



Chapter 2

Theoretical Part

Modern cosmology is based on the cosmological principle, it states that our position as
observer does not play a special role in the universe. This notion assumes that the distri-
bution of matter in the universe is homogeneous and isotropic on enough large scale.

The ΛCDM cosmological model provides a good approximation of the parametrization
of the Big Bang model, based on the Einstein theory. It suggests the presence of the so
called cosmological constant Λ, that represent the vacuum energy or dark energy that leads
the universe expansion and it composes approximately the ∼ 70% of the energy density
of the universe [3], than it suggests the presence of a non-relativistic cold dark matter
(CDM), the aforementioned undetectable matter that composes around the ∼ 25% of the
energy density [3] and other components as ordinary matter ∼ 5%, and a remaining small
fraction of relativistic matter (CMB photons, relic neutrinos) [3].

According to the standard cosmological model ΛCDM , large-scale structure have formed
through gravitational instability of a small primordial fluctuation [4], this model has sur-
vived more than a decade of precise observation, last of them the Planck 2015 data [3].
Despite it is extremely accurate for testing large-scale structure, it suffers from intrinsic
theoretical unknown, e.g: the understanding of cold dark matter (CDM) and the cosmo-
logical constant Λ [10].
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2.1 Cosmological Background

To describe the geometry of an expanding universe, with scale factor a(t), we can use the
Friedmann-Robertson-Walker (FRW) metric, so that the physical distance between two
points separated by a distance ds, in spherical coordinates [8], is given by

ds2 = −c2dt2 + a2(t)

(
dr2

1−Kr
+ r2dθ2 + r2 sin2(θ)dφ2

)
(2.1.1)

where K is the spatial curvature that takes the values 0 if flat and ±1 for a open or close
space. The concept of metric is completely independent from any physical application [8],
the connection with general relativity comes when we relates the metric to the matter and
energy in the universe, so that gravitation is the result of the curvature of the space-time
by indeed mass and energy [8], this is described by the Einstein Field Equation (EFE).

Gµν ≡ Rµν −
1

2
gµνR+ Λgµν = 8πGTµν (2.1.2)

to understand the evolution of the scale factor we need to consider the zero order
component [8], or the time-time component of the Einstein Field Equation Equation (2.1.2),
the Friedmann equation.

ȧ2 + k

a2
=

8πGρ+ Λ

3
(2.1.3)

it is often expressed in redshift z = 1
a
− 1 and in terms of present values of its density

components:

H(z) = H0E(z) = H0

√
Ωr(1 + z)4 + Ωm(1 + z)3 + ΩK(1 + z)2 + ΩΛ (2.1.4)

where the quantity Ωi ≡ Ωi,0 is the total i component density at the present day, H is the
Hubble parameter and H0 the Hubble constant.
A further explanation of the equality express in Equation (2.1.4) are shown in the following
four equation. ∑

i

Ωi = 1 Ωi ≡
ρi
ρc

ρc ≡
3H2

0

8πG
H(t) =

ȧ

a

Where ρc is the critical density and G is the Newtonian constant of gravitation.
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In cosmology there are different notion of distance, but the one that will interest us is the
comoving distance. It approximates the spacial separation between two object considering
the expansion of the universe, in the case of an observer at z = 0, the object of interest
at redshift z [9] and with the help of the Friedmann equation (2.1.4), for a flat universe
(K = 0) and at low redshift 0 < z < 1, we have:

dC(z) =
c

H0

∫ z

0

dz′

E(z′)
(2.1.5)

where c is the speed of light and H0 the aforementioned Hubble constant.

We can than take the definition of the comoving volume as the volume in which the
number densities of object, that follow the Hubble flow, are constant through redshift [8].
The comoving volume element per solid angle per redshift is given by

dVC
dz dΩ

=
c

H0

· d
2
C(z)

E(z)
(2.1.6)

as we can imagine, performing the integration for full sky the results is

VC(z) =
4π

3
d3
C(z)

In order to understand the structure formation we need to study the evolution of
density inhomogeneities in the expanding universe, for small variations relative to the
mean background density ρ̄ [11], the fluctuation can be expressed as:

δi ≡
ρi − ρ̄
ρ̄

Into non-linear regime the baryonic content nature, like for example star formation or
hydrodynamical effect [11], becomes crucial to describe the distribution of galaxy that in
this case maybe does not accurately reproduce the distribution of dark matter halos. The
common approach is to assume number density distribution n(x) of galaxy cluster that
undergo to a simple proportion with the density fluctuation δ(x) [11], for sufficient large
volume.

δn(x)

n̄
= b δ(x) (2.1.7)

where b is the biasing parameter.
In that way we are able to relate galaxy cluster distribution to those of density matter
fluctuation.
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2.2 the Halo Number Counts Variance

In a sufficiently large comoving volume survey Vs the density fluctuation distribution is
considered nearly-Gaussian [16].

P (δm|δ̄m, σm) =
1√

2πσm
exp

(
− δ2

m

2σ2
m

)
(2.2.1)

by construction the mean is supposed to be δ̄m = 0 to assume linear perturbation, then
the rms mass density fluctuation in the survey volume 〈δ2

m〉 = σ2
m is defined as:

σ2
m(Vs) =

1

2π2

∫
k2 Pm(k)

∣∣∣W̃ (k, Vs)
∣∣∣2 dk (2.2.2)

here Pm(k) is the linear matter power spectrum and W̃ (k, Vs) is the Fourier transform of
the window function.

Simulation can predict the number counts of cluster as a function of their mass and
comoving volume [16], to do so we followed the theoretical development explained in the
paper by Lacasa & Rosenfeld 2016 [12], Takada & Spergel 2014 [16] and Valageas et al.
2012 [17].
To estimate the mean number of halos within a redshift bin [z; z + dz] and mass bin of
width [M ;M + dM ], we started from the following definition [12].

N̄(M, z) ≡ 〈N(M, z)〉 =

∫
dV d(lnM)

dn

d(lnM)
(M, z)

where dn/d(lnM) is the halo mass function. In our case we can use Equation (2.1.6) to
express the volume element dV in redshift dz so that, for a full sky survey, we have:

N̄(M, z) = 4π

∫
dz d(lnM)

dV

dz dΩ
· dn

d(lnM)
(M, z) (2.2.3)

Here 4π comes from the full sky integration of the solid angle and dV/dz dΩ can be sub-
stituted by the right hand side of Equation (2.1.6).

Of course in a practical case we have to include some hamper effects like the mass-
observable relation or some detector noise, as we mentioned in Chapter 1 with Equation
(1.1.1). In this dissertation such complications will not be considered for simplicity.

Then the number counts of halo within a survey volume delimited by the redshift bin
limits is given by

N(M, z) =

∫
dV d(lnM)

dn

d(lnM)
(M, z)[1 + b̄(M, z)δm(VS)] (2.2.4)
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Here N̄ ≡ dV [dn/d(lnM)]d(lnM) should be interpreted as the ensemble average ex-
pectation of the number counts, and b̄ is the mean halo bias.
Similarly at what we said before, simulations are able to predict the bias of cluster b(M, z)
in function of their mass and redshift [15], we can define the mean halo bias [16] such that

b̄(M, z) =
4π

N̄

∫
dz d(lnM)

dV

dz dΩ
· b(M, z)

dn

d(lnM)
(M, z) (2.2.5)

Equation (2.2.3) and Equation (2.2.5) will be used later in Chapter 3 to compare the
numerical prediction and the results obtained by our simulation.

Let assume that we have a data set N = (N1, . . . , Nn), where each ith index refers to the
cluster number counts in that specific bin, in our case it is considered as a 2-dimensional
binning, mass and redshift bin, such that i ≡ (iM ; iz). To explore the number counts
Ni ≡ N(MiM , ziz) one can use the statistical propriety of Gaussian distribution (2.2.1),
than following the theoretical construction in Valageas et al. [17], for two non overlapping
bins i and j we have:

〈NiNj〉 = δKij 〈Ni〉sn + 〈NiNj〉sv

= δKij
〈
N̄i(1 + b̄i δm)

〉
+
〈
N̄i(1 + b̄i δm) N̄j(1 + b̄j δm)

〉
= δKij N̄i + δKij N̄ib̄i 〈δm〉+ N̄i N̄j + N̄i N̄j(b̄i + b̄j) 〈δm〉+ N̄i N̄j b̄i b̄j

〈
δ2
m

〉 (2.2.6)

Where δKij is the Kronecker Delta function, with δKij = 1 if i = j, otherwise δKij = 0.

Here in the first line, the bracket on the right evaluate the sample variance average
without Poissonian contribution, or shot-noise, that is expressed separately in the bracket
on the left. we obtained the second line considering Ni ≡ N̄i[1 + b̄iδm], relation already
mentioned in Equation (2.2.4).
If we consider the last line we can see that the second and the fourth term disappears, as
the density fluctuation mean 〈δm〉 is equal zero, in the last term the 〈δ2

m〉 is the rms mass
density fluctuation defined with Equation (2.2.2).
From Equation (2.2.6) we can define the Halo Number Counts Variance (HNCV) given by

σ2
HNCV ≡ 〈NiNj〉 − 〈Ni〉 〈Nj〉 = δKij N̄i + N̄iN̄jbibjσ

2
m (2.2.7)

Where the first term on the right side of the equation is the Poisson error σ2
Poiss, due to

the finite size of the sample halos, and the second term is the halo sample variance HSV
σ2
HSV contribution arising due to the super-survey modes.

In Equation (2.2.7) the quantities N̄i, bi and σ2
m can be numerically evaluated once a cos-

mological model is chosen, meanwhile other quantity as the Windows function Wi and the
halo mass function can be chosen.
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The origin and contribution of the Poisson error is relatively trivial to understand but
less clear is the importance of the additional statistical fluctuation that the halos sample
σ2
HSV is generating. Moreover, as we mentioned in Chapter 1, new upcoming survey will

increase the halo sample size to such a level that a more complete study of Equation (2.2.7)
is necessary.
For this reasons the Halo Number Counts Variance will be at the center of the discussion
in this dissertation. We want to test its behavior trough different mass and redshift bin for
a full sky survey. In Chapter 3 we will start with evaluating its Covariance Matrix, then
we will examine the relative contribution of the two statistical fluctuation, then we will
compare the mock data from a simulation with some numerical results, then at the end we
will have a look at the behavior of the Halo Number Counts Variance for different survey
Area with the data obtained from the simulations.
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2.3 Pinocchio-4.0

In order to generate mock catalogs in a cosmological model, we used the PINpointing Orbit
Crossing Collapsed HIerarchical Objects (PINOCCHIO) code. It is a semi-Lagrangian
code that use second- and third-order Lagrangian Perturbation Theory LPT to describe
respectively particle displacement and halo construction. It is focused to work for the
standard ΛCDM cosmology model

In the last years PINOCCHIO has been tested in several ways by comparing its extrap-
olated halo proprieties against the ones from N-body simulations [19], as the degeneracy
between Ωm and σ8 from the halo mass function, the two-point correlation function, the
halo power spectrum, or the clustering propriety of halos up to k = 0.3h/Mpc showing
results as the original code. Regarding some propriety that will concern our dissertation,
PINOCCHIO can precisely reproduces the halo density field with the same level of preci-
sion as a N-body simulation with an agreement between the analytic fitting formula and
the simulation mass function of the order ∼ 10% [19] in the high mass range.

The algorithm followed by PINOCCHIO code at first creates a linear density field on
a regular cubic grid in the Lagrangian space, this way of starting follows indeed the same
way to create initial condition in N-body simulation. This density field is subsequently
smoothed on a continuous time sampling so to predict the collapsing time, adopting a el-
lipsoidal collapse model, at that point these particles are expected to be grouped together
into dark matter halos or the filamentary networks, mimicking their hierarchical formation
[18]. Accretion has considered of two type, particle-halo or halo-halo, the two object are
displaced to their expected Eulerian position at the collapsing time, here halo displacement
are considered as the average displacement of all the particles that compose it, accretion or
merging take place if their distance is below a threshold that depend on the largest object
Lagrangian radius.

A certain freedom on the choice of which order of LPT to considered is present in
PINOCCHIO code, this provides a way to test effect of increasing LPT order for displace-
ment calculation, as a matter of fact the second-order LPT is used to implement halo
displacement and third-order LPT is used to halo accretion or particle merging [18].

The PINOCCHIO code creates different outputs that can be used to perform different
kind of cosmological study, the one that interests us is the past-light cone file; an object is
listed in such halo catalog when the halo trajectory xhalo(z) intersects with the light cone
xplc.

|xhalo(z)− xplc| = dp(z) (2.3.1)

here dp is the proper distance. Knowing the redshift interval in which the halo crossed
the past-light cone, we can solve Equation (2.3.1) by z and so determine the time at which
the detection occurred.
The setup of the parameter file consisted in the definition of the standard cosmological
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parameter, shown in Table 2.1, and by defining the observer position, or origin of the past-
light cone, that in our case is placed at the center of the box PLCCenter, to defining the
comoving volume we specify the orientation PLCAxis of the cone, its aperture PLCAperture
and the starting and stopping redshift StartingzForPLC and LastzForPLC in which we
want to run our simulation.

Variable Value

Ωm 0.25
ΩΛ 0.75
Ωb 0.044
h 0.7
σ8 0.8
ns 0.96
w0 −1
wa 0

BoxSize 1200Mpc/h
GridSize 666

FileWithInputSpectrum no
MinHaloMass 100

StartingzForPLC 0.19
LastzForPLC 0.0
PLCCenter (600, 600, 600)Mpc/h
PLCAxis (1, 1, 1)Mpc/h

PLCAperture 180 deg

Table 2.1: parameter file
The first part of the Table shows the parameters to set the cosmological environment. We
used the Planck 2015 data [3] to represent a flat standard ΛCDM cosmology. The second

part of the Table shows the parameter necessary to set the simulation. If not specified
(FileWithInputSpectrum: no), the code consider the Eisenstein & Hu power spectra.

From the parameter file the PINOCCHIO code sets different physical quantity, but we
have particular interest in one of them, the particle mass, calculated with the following
formula.

Mpart = Ωm ρc

(
BoxSize

GridSize

)3

in our case this quantity is equivalent to Mpart = 4.059 × 1011M�/h. Combining Mpart

with the initial parameter MinHaloMass we can assure that the smallest mass in our halo
catalog is Mmin = 4.059× 1013M�/h.



Chapter 3

Analysis Part

The simulation is set up so to emulate real galaxy cluster observation, the outputs provide
a past-light cone catalog file, listing the features (mass, observed redshift, velocity, etc.)
of all the galaxy clusters that satisfied the condition imposed in the parameter file. The
origin of this past-light cone is placed at the center of the box, the comoving survey vol-
ume is than split into shells, this length is calculated using the comoving distance formula,
Equation (2.1.5).

Figure 3.1: Cluster Mean Count
Comparison of the mean cluster number count between the 3 different redshift bin, blue
solid line for the lowest redshift bin z ∈ [0 ; 0.06], green solid line for z ∈ [0.06 ; 0.13] and
red solid line for z ∈ [0.13 ; 0.19]. The points are situated at the center of the mass bin.
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We are interested in the mass and the observed redshift of the detected galaxy clusters.
We bin these observable into nM = 5 mass bin, spaced in logarithmic scale ∆log(M) =
0.277 between 4.1 × 1013M�/h and 1015M�/h, and nz = 3 redshift bin between 0 and
0.19 with linear spacing of ∆z = 0.06 (the reason for such a narrow redshift range will be
explained later in the conclusions, Chapter 4).

From the binned data we arrange the number counts matrix in the form N = (Nij) =

( ~N1, ~N2, . . . , ~NnR
) with i = 1, . . . , nR and j = 1, . . . , nV , where nR = 100 is the number of

simulations, nV = nM · nz = 6 the number of variables and ~Ni the data vector. Therefore
the matrix element Nij express the number of galaxy cluster of the ith realization with the
jth variable.

In our case the data vector has the following form:

~Ni ≡


Ni1

Ni2

. . .
Ni nV

 =



N̂i(z1,M1)
...

N̂i(z1,MnM
)

N̂i(z2,M1)
...

N̂i(z2,MnM
)

...

N̂i(znz ,M1)
...

N̂i(znz ,MnM
)


As a first look we show, in Figure 3.1, the mean number count calculated from the

binned data for the three different redshift bin, we can see that the calculated quantity
increase for higher redshift bins as these correspond to larger survey volume.
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3.1 the Covariance Matrix

As a first step, we are interested in the relation between different mass bin and its evolution
through different redshift, to do so we study the covariance matrix for cluster counts.
The covariance matrix is a square symmetric matrix nV -by-nV , with matrix elements de-
fined as:

Cjk =
1

nR − 1

nR∑
i=1

(Nij − N̄j) · (Nik − N̄k) (3.1.1)

where Cjk estimate the covariance between the jth variable and the kth variable. From this
definition we can clearly see that the diagonal of the covariance matrix C is the variance
of the data vector.

V ar(Nk) = Ckk =
1

nR − 1

nR∑
i=1

(Nik − N̄k)
2 (3.1.2)

Figure 3.2 shows the normalized cluster counts covariance matrix Cnorm
jk , in absolute

value. We normalized the matrix by its diagonal elements and considered the absolute
value because we are only interested in the amplitude of their correlation.

Cnorm
jk =

∣∣∣∣∣ Cjk√
Cjj · Ckk

∣∣∣∣∣
We can see that, at the lowest redshift, all the first three mass bins, low mass M ≤ 1014M�,
show strong correlation Cnorm

jk ≥ 0.6 amongst them, but this effect decreases for higher red-
shift and for far apart mass bin, keeping correlation with Cnorm

jk ≥ 0.5 only with the closes
mass bin.

Due to the universe expansion, the contrast in the matter density fluctuation δm grows
and on relatively small scale we enter into non-linear regime, for scale smaller than ∼
10Mpc/h. As expected by non-linearity on small scale, the off-diagonal correlation terms
increase at lower redshift.



16 3. Analysis Part

Figure 3.2: Normalized Covariance Matrix
Normalized cluster counts covariance matrix in absolute value Cnorm

jk .
With 5 mass bin and 3 redshift bin.

Figure 3.3: Covariance Matrix
Cluster counts covariance matrix in absolute value Cjk.

With 5 mass bin and 3 redshift bin.
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3.2 the Sample Variance and Shot Noise Ratio

As we have seen in Chapter 2.2, there is a complete statistics to describe the variance of
the halo number counts, therefore we are interested in the study of this statistical error and
at first we can easily imagine that there is a dependency on the survey volume Vs of our
simulation, but this section it is more about questioning on which conditions the Poisson
error or the HSV error gives the larger contribution to the Halo Number Counts Variance
HNCV, Equation (2.2.7).
With this purpose in mind we studied the behavior of fraction of the two above mentioned
contributions.

σ2
HSV

σ2
Poiss

=
V ar(Ni)− N̄i

N̄i

(3.2.1)

The numerical results for the value of σ2
HSV /σ

2
Poiss are shown in Table 3.1, meanwhile we

plotted the results in Figure 3.4.

As we can see, there is a trend for low mass ≤ 1014M�/h to favor Sample Vari-
ance than Poisson Variance. In our case this effect ceases, with σHSV ≤ 0.8σPoiss,
at mass larger than ∼ 2 × 1014M�/h for redshift bin ∆z1 and at the same mass bin
∆M2 = [7.77 ; 14.70]× 1013M�/h for redshift bin ∆z2 and ∆z1.

The extreme extension of the HSV predominance takes place at the lowest mass bin
∆M1 = [4.10 ; 7.77] × 1013M�/h and redshift bin ∆z1 = [0.00 ; 0.06], with a relation up
to σHSV ≈ 2σPoiss.

σ2
HSV /σ

2
Poiss ∆M1 ∆M2 ∆M3 ∆M4 ∆M5

∆z1 3.93 1.98 0.81 0.38 0.0
∆z2 2.74 1.02 0.18 -0.01 0.04
∆z3 1.88 0.81 0.41 0.01 -0.23

Table 3.1: HSV Test
The values in this table show the square proportion between the HSV and the Poisson

variance. Results obtained using Equation (3.2.1) for the different redshift and mass bin.

The Halo Sample Variance σHSV seams to keep a moderately predominance over the
Poisson Variance σPoiss for our lower ∆z1 and the higher ∆z3 redshift bin, towards the
different mass bins, with σHSV ≈ 0.7σPoiss, and only on the last mass bin to drop relatively
with σHSV ≈ 0. Instead, for ∆z2 this effect seems to drastically stop, with σHSV ≤
0.4σPoiss, once we overstep into the higher mass range.
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Figure 3.4: HSV Test
Results obtained from Equation (3.2.1), Ratio between the Sample Variance and Shot

noise for the 3 different redshift bin, blue solid line for the lowest redshift bin
z ∈ [0 ; 0.06], green solid line for z ∈ [0.06 ; 0.13] and red solid line for z ∈ [0.13 ; 0.19].

The points are situated at the center of the mass bin.
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3.3 Comparison of the Statistical Error with a Nu-

merical Model

Our goal here is to compare our results from the simulation with a numerical prediction of
Equation (2.2.7), that here we rewrite again in a more practical way:

σ2
HNCV = N̄ij + b̄2

ijN̄
2
ijσ

2
m(Vj) (3.3.1)

where N̄ij ≡ N̄(Mi, zj) and b̄ij ≡ b̄(Mi, zj) are the mean number count and the mean
bias for the relative redshift bin ∆zj and mass bin ∆Mi. Here Vj is the survey volume
calculated with Equation (2.1.6).

It is important to underline that the numerical code, that we will use to evaluate the
mean count N̄ and mean bias b̄, was developed by the doctorate and assistant of Prof.
Jochen Weller, Mr. Steffen Hagstotz, we manipulated the code to fit our necessity in this
dissertation.

For the construction of the rms mass density fluctuation σm, of the form Equation
(2.2.2), we consider the windows function of a shell, with volume VR,r = 4π

3
(R3− r3) where

R is the external radius and r the internal radius:

WR,r(x) =
3

4π(R3 − r3)
Θ(R− x) Θ(x− r) (3.3.2)

here Θ(x) is the Heaviside step function so that Θ(R − x) = 1 if x ≤ R, zero otherwise,
and Θ(x− r) = 1 if x ≥ r, again zero otherwise, the Fourier Transform then is:

W̃R,r(k) =
3

(R3 − r3)k3
[sin(kR)−Rk · cos(kR)− sin(kr) + rk · cos(kr)] (3.3.3)

we can clearly see that in the case of r = 0, we reduce this equation to the well know
spherical window function.

Then to continue the construction of the analytical model we consider the mean number
counts N̄ as defined as in Equation (2.2.3), that for simplicity we repeat here again

N̄(M, z) =
4π c

H0

∫
dz d(lnM)

d2
c(z)

E(z)
· dn

d(lnM)
(M, z) (3.3.4)

as halo mass function we decided to use the the Tinker 2008 halos mass function [13],
defined as follow:

dn

dM
= f(σm)

ρ̄m
M

d ln(σ−1
m )

dM
(3.3.5)
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where ρ̄m is the mean mass density of the universe and the function f(σ) express the
fraction of the volume that has collapsed, it is than parametrized by the following expression

f(σm) = A

[(σm
b

)−a
+ 1

]
e−c/σ

2
m

here we have the parameter to be.

A = 0.175 · (1 + z)−0.012

a = 1.53 · (1 + z)−0.04

b = 2.55 · (1 + z)−0.194

c = 1.19 · (1 + z)−0.021

We chose these parameter because they are valid for a mass definition similar to the
one used by the PINOCCHIO code.

In conclusion we also considered the mean bias as defined by Equation (2.2.5), that we
repeat here in a more practical way,

b̄(M, z) =
1

N̄

4π c

H0

∫
dz d(lnM)

d2
c(z)

E(z)
· b(M, z)

dn

d(lnM)
(M, z) (3.3.6)

The bias b used here is the Tinker 2010 bias [14].

In the evaluation of Equation (2.2.4) and Equation (3.3.6), we expected to have a
discrepancy between the numerical result and the simulated data of the Statistical Error
Equation (3.3.1) to be on the order of ∼ 10 − 20%, as suggested from the study on the
halo mass function performed by Tinker 2008 [13].
Meanwhile for our data, we consider the error on the mean number count δN̄ to be the
Standard Deviation for discrete variable, such that

δN̄j =

√√√√ 1

nR − 1

nR∑
i=1

(
Nij − N̄j

)2
=
√
Cjj (3.3.7)

As we can expect, because of the mean number count in Equation (3.3.1), there is an
Error-propagation on our Cluster counts covariance matrix Cjk, so that we can express an
error on our data δCjk in the following form, for j and k ∈ {0 ; nV }

δCjk =
1

nR − 1

√√√√( nR∑
i=1

(Nik − N̄k) · δN̄j

)2

+

(
nR∑
i=1

(Nij − N̄j) · δN̄k

)2

(3.3.8)
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We compared the numerical result obtained from Equation (3.3.1) with the diagonal of
the Covariance Matrix Cjk, Figure 3.3. The results are shown in Figure 3.5.

As we can see, the the mean number count N̄ from the simulated data, right panels
Figure 3.5 in red, in general corresponds with the numerical model.
A certain degree of disagreement occurs for low mass ≤ 1014M�/h and this behavior is
more evident when we compare the numerical and simulated Halo Number Count Variance
σ2
HNCV , left panels Figure 3.5, the discrepancy here seems to be more prominent for low

redshift bin.
We notice that the simulation data seems to underestimate the number of massive halos for
all the three case of redshift bin, that can maybe explained by the difficulty of accurately
fit the halo mass function for this range of mass [13].
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Figure 3.5: HNCV Test
The left panels show the comparison between the simulated data, in red, and the

numerical evaluation, in blue, of the Statistical Error, Equation (3.3.1), while right panels
show the comparison between the simulated data, in red, and the numerical evaluation,
in blue, of the mean number count N̄ , Equation (2.2.5). For the simulation data, the

x-axis error bar is the size of the mass bin, the y-axis error bar is defined, on the right by
δN̄j, Equation (3.3.7), on the left by δCjk, Equation (3.3.8). The two blue line

correspond to the 20% discrepancy suggested by Tinker 2008 [13].
The points are situated at the center of the mass bin.
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3.4 Relation with the Survey Area

In this section we want to have a look at the statistical error and its relation with the sur-
vey area, to do so we constrained our full sky survey data by the past-light cone aperture
PLCAperture, that results into a solid angle of the size of the wanted survey.
We took just a few out of the many present galaxy cluster survey mentioned before in
Chapter 1, we chose the one considered the most promising and interesting.

To test this matter we used the Sample Variance and Shot noise Ratio, Equation (3.2.1),
for a full-sky survey 40′000 deg2 like eRosita, an half-sky survey of 20′000 deg2 with LSST,
a quarter-sky survey 15′000 deg2 like Euclid and a narrow survey area of 5′000 deg2 as DES.

As we can see from the results shown in Figure 3.6, the Sample Variance and Shot noise
Ratio decreases for larger survey area, and this effect is more pronounced for increasing
redshift. In fact we expected this trend as the study done by Valageas et al. 2012 [17]
asserts that in the regime where the Poisson variance is dominating, the Ratio grows as
the inverse square root of the total survey area σ2

HSV /σ
2
Poiss ∝ A−0.5 [17]. Meanwhile in the

regime dominated by the HSV the quantity has a more complex form that also depends
on the primordial index ns, in our case we will have the form σ2

HSV /σ
2
Poiss ∝ A−0.74 [17].
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Figure 3.6: Comparison with Survey Area
The plots show the Sample Variance and Shot noise Ratio for different survey area, given

in Table 1.1. Points are situated at the center of the mass bin.
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Conclusion

In this dissertation we have explored the effect of large scale structure correlation on the
cluster counts. We first started our analysis with Chapter 3.1, we calculated the Covari-
ance Matrix with the data obtained from our simulation, we noticed that strong correlation
occurs for low mass ≤ 1014M�/h and that off-diagonal terms increase their correlation
especially for lower redshift. In Chapter 3.2 we explored the ratio between the Sample
Variance and Shot noise. We observed that the HSV prevails the Poissonian contribution
for mass ≤ 1.5 × 1014M�/h at the lowest redshift bin ∆z1 = [0.00 ; 0.06], with a relation
up to σHSV ≈ 2σPoiss. For higher redshift bin this behavior acts on a smaller range of mass
≤ 7.7× 1013M�/h, with a proportion of σHSV ≈ 1.4σPoiss.
Nowadays the contribution of the Poisson error is well understood, less clear is the impor-
tance of the Halos Sample Variance contribution. Several author developed a theoretical
model to describe the Halo Number Counts Variance σ2

HNCV and that can be summarized
by Equation (3.3.1). In Chapter 3.3 we concentrate our efforts to verify this relation, look-
ing at Figure 3.5 our conclusion is that in the range where the HSV dominates, there is a
discrepancy between the model and our data of some importance, becoming less and less
pronounced for higher redshift. This can be generated from mismatch between the numer-
ical and the actual halo bias measured in the simulation, or also from incompleteness in
the used model, we are confident that if we include higher term of contribution, we will be
able to better understand this behavior and possibly have better match with the theory
prediction.
Because the advent of new galaxy cluster surveys, we wanted to mention the relation be-
tween the Halo Number Counts Variance and the survey area, in Chapter 3.4, we noticed
that the HNCV roughly decreases for larger solid angle. This can lead to a first evaluation
of the contribution of Sample Variance for their setup.

As we mentioned before, in this dissertation we only assumed the 1-halo term, the Pois-
son Variance, and the 2-halo term contribution, the Halo Sample Variance, to be relevant
for the estimation of the Halo Number Count Variance HNCV, but we can easily see that
a deeper analysis can be performed if we consider higher degree of contribution, similarly
to what is proposed by Takada & Spergel 2014 [16], and this farther assumption can surely
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help in a better prediction.

To conclude, it is important to clarify that our initial goal was to work with a larger
redshift range 0 ≤ z ≤ 1, but when we was studying the Sample Variance and Shot noise
Ratio, Equation (3.2.1), some absurd results was pointed out and we later discovered that
this inexplicable behavior was related to the box replication in the PINOCCHIO code.
Despite this problematic we decided to stick on using the PINOCCHIO code, especially
because its affordability on matter of simulation run time, and to avoid this unexpected
behavior we reduced the redshift range so that our past-light cone did not exceed into the
adjacent replicated box, of course this induced some technical limitation on the box size,
therefore on the redshift range, imposed by the available run memory.
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